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Lecture notes and slides authorized

Exercice 1

We consider a classification problem with two classes w; and we whose densities are

f(x|w;) = ! exp [ ! (x — mz)ﬂ i=1,2 (1)

2mo? 202
with x € R, 0 > 0 and mq > mao.

1. (3 pts) Derive the Bayesian classification rule associated with this problem when we use the 0 — 1
cost function and when the two classes have the prior probabilities P(w;) = P; and P(w3) = Ps.
Interpret this result using the centroid distance rule when P, = P, and P, > P». Express the
probability of error of this rule as a function of m1, ma, o2 and the cumulative distribution function
of the A/(0, 1) Gaussian distribution denoted as F'.

Response: The Bayesian classifier accepts the class w; (denoted as d*(z) = wy if
f(@lwr) P(wr) = f(z|wz) Plws)
or equivalently if
In[f (z|wn)] +n[P(w1)] = In[f(z|wz)] + I[P (w2)].

Straightforward computations lead to
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Since m1 > mo, we obtain

2 P
d*(ﬂf):wlﬁﬂfzml—;m2+ g ln<2).

When the two classes are equiprobable, we have

which is the centroid distance rule, i.e., the class w; is accepted if x is closer to its centroid my
than to the other class centroid mo. When P; > P>, the class w; is more likely than the class wa.
In this case, the threshold

my + mo o? Py
S = In( ==
2 +m1—m2 n<P1>

is smaller than the centroid % (since In (P»/P;) < 0 and my — mg > 0), which corresponds
to accepting the class w; more often than in the equiprobable case. This property is in agreement
with P| > Ps.



The error probability of the Bayesian classifier is defined as
P. = P[d"(X) = w1|X € wo]P(X € wa) + P[d*(X) = w2|X € w1]P(X € w1)

or equivalently
P, = P[X > S‘X S (UQ]PZ +P[X > S|X S wl]Pl.

In order to use the cumulative distribution function of the A/(0, 1) distribution, we have to express
the two probabilities as follows
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Finally, we obtain

with

and
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. (2 pts) Show that the Bayesian decision rule can be written as

") = 9100 = Ty < 3
where oo Pl
_ g [Llrlen Pen)]
a(z) =1 [ﬂxm)mm}

For the example of the previous question, derive the function a(z) and prove that is is affine, i.e.,
a(x) = ayjx+ag, where a; and a9 are two functions of mj, mo, o2, P;, P, that you will determine.

Response: the Bayesian decision rule
d*(z) = wi & f(zlw)Pwr) = f(z|w) P(ws)

is equivalent to

d*(z) = w1 & a(x) =In [W] -

or, by using the fact that the function g is a decreasing function

d*(z) = w1 & gla(2)] < 9(0) = 5.
After replacing the expressions of the densities f(z|w;) and f(z|w;) in the expression of a(x), we
obtain

i.e.,

that is indeed an affine function of x with
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3. (4 pts) Based on the results of the previous question, we can define a so-called logistic regression
classifier defined as

1
14 exp(—a1x — ag)

1
dir(T) = w1 < ga(x) < 3
where @ = (ay,a2)”. In a practical application, the parameter vector a can be determined using

training data from the two classes w; and wy denoted as x = {(z1,41), (z2,%2)s» (Tn,Yn)}
where y; = 0 if x; belongs to class w; and y; = 1 else.

e A first idea is to determine the vector a that minimizes the cost function

n

i @)= - lgale) — il

i=1
Why do you think that this cost function is not appropriate for estimating the vector a?

e Another idea is to minimize the cost function
1 n
Ca(x,a) = ~ > A—viln[ga(z:)] = (1 — y;) In[1 — ga(w:)]}
i=1

with respect to a. By considering samples from the class w; (such that y; = 0), analyze the
value of the ith term of the cost function when gq(;) is close to 1 or close to 0 and explain
why this cost function is appropriate. Calculate the gradient of this cost function and show
that the steepest descent rule can be expressed as

n n
I
vttt =af — ” Z[ga(:ﬂl) — yilzi, and aftt = af — ” [9a (i) — yil-
i=1 =1

Response: We can guess that the first cost function C' (x, @) is non-convex and thus not appropriate
for its minimization. Let’s analyze the second cost function Cy(x,a). When y; = 1, the ith
term of this cost function reduces to — In[gq(z;)], which equals 0 when g4 (z;) is close to 1 and
tends to +00 when gq(x;) tends to 0. When y; = 0, the ith term of the cost function reduces to
—In[1 — ga(x;)], which equals 0 when gq(x;) = 0 and tends to +o00 when gq(z;) tends to 1. As
a consequence, minimizing the cost function Cs(x, a) will provide a classifier trying to minimize
the classification errors, which is precisely what we want.

The gradient of the cost function Cs(x, @) is defined as

002 (x,a) 1 n 1 Ogal(x) - 1 dgalzi)
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Straightforward computations lead to

n n

n H

a?+1 = a? — E E [ga(xi) — yi]xi, and a721+1 = CLS - — [ga(xi) - yl]
i=1 i=1
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Questions related to the working paper

Remark: please make sure to justify all your responses very carefully.

1. (1 pt) Explain why higher-order statistics (HOS) are resistant to additive colored Gaussian noise

Response: the cumulants of orders higher than 2 of a Gaussian sequence are equal to zero. Thus,
if the noise g(n) and the signal of interest z(n) are independent, the cumulants of the signal plus
noise (received signal y(n) = z(n) + g(n)) are equal to the cumulants of the signal plus the
cumulants of the noise, i.e., Cjy = Cj » + Ci 4. When the noise g(n) is Gaussian, its cumulants
of order higher than 2 are zero, i.e., C}, 4, = 0 for k > 2, which proves that the cumulants of order
k > 3 of the received signal are equal to the cumulants of the noiseless signal of interest. In other
words, Cy , = C} ., for k > 3, showing a kind of non-sensivity to an additive Gaussian noise
g(n). This is what the authors mean by “resistant to additive Gaussian noise”.

. (1 pt) Express the 4th order cumulant Cy of the signal y(n) as a function of E[y*(n) and E[y?(n)].
Response: Using (4), we obtain

Cio = Bly'(n)] = 3E[y(n)].

. (1 pt). What is a BPSK constellation? Demonstrate that Cyy = —2 for this constellation.
Response: A BPSK constellation corresponds to the two equiprobable symbols s; = 1 and sy =
—1. For this constellation, we have ?(n) = y*(n) = 1, hence Cyo = 1 — 3 = —2.

. (1 pt). What is a PAM(4) constellation? Demonstrate that C'yy = —1.36 for this constellation.
Response: A PAM(4) constellation corresponds to the four equiprobable symbols s1 = a,s2 =
—a,s3 = 3a and s4 = —3a. For this constellation, we have y*(n) = a? with probability 1/2
and y?(n) = 9a® with probability 1/2. Thus, E[y?*(n)] = 5a%. Similarly, y*(n) = a* with
probability 1/2 and y*(n) = 81a* with probability 1/2. Thus, E[y*(n)] = 41a* hence Cyp =
41a* — 3(25a*) = —34a*. It is mentioned in the paper that C; = E[y?(n)] = 5a? = 1, which
leads to a = 1/+/5, leading to Cy9 = —34/25 = —1.36.

. (1 pt) Explain why C}s is unaffected by a (deterministic) phase rotation.
Response: We have

Ciz = cum(y(n), y(n),y*(n),y*(n)] = Elly(n)["] = 2B(ly(n)*] - Ely* ()] El(y"(n))?]-

When y(n) is multiplied by e/, the two first terms E[|y(n)|*] and E?[|y(n)|?] are unchanged
since |y(n)e’?| = |y(n)|. When y(n) is multiplied by e/?, the last term equals

Ely*(n)e??|E[(y*(n))?e” %] = Ely*(n)] E[(y*(n))?]
which does not depend on ¢. As a consequence, Cyo is unaffected by a deterministic phase rotation.

. (1 pt) ? Demonstrate Eq. (15).
Response: for equiprobable hypotheses Hy and H1, the Bayesian classifier accepts Hy if

1 (S —po)*\ _ 1 (S — 1)’
o exp { 203 > exp 20%

or equivalently if
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Using straightforward computations, we can show that this inequality can be written
(S —p)? <a?

with
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which proves (15).

. (1 pt) Explain where the decision rule (18) comes from.

Response: Suppose that we want to use Cyq for the classification of PSK(8), QAM(4,4), PAM(4)
and BPSK constellations. We have C4y = 0 for PSK(8), Cy9 = —0.68 for QAM(4.,4), Cyy =
—1.36 for PAM(4) and C49 = —2 for BPSK, which leads to the following rule

2 1.36
BPSK if Clip < ————— = ~1.68 )
~1.36 — 0.68
PAM@) if — 1.68 < Cip < ——5—— = ~1.02 3)
. —0.68
QAM(4,4) if —1.02 < Cy < = —0.34 @)
PSK(8) if Cyp > —0.34 5)

This rule is equivalent to (18).

(1 pt) In Example 3, explain why the pdf f(g) = (1 —€) fn(g) + €f1(g) corresponds to the pres-
ence of outliers in the data. What is the outlier probability for this pdf?

Response: This pdf corresponds to a percentage of 1 — € noise samples distributed according to a
zero mean Gaussian distribution with variance 012\, and a percentage of € noise samples distributed
according to a zero mean Gaussian distribution with variance a? = 1000]2\,. The samples associ-
ated with the A/ (0, 0‘%) distribution are the outliers. There is a probability of € to have an outlier in
the data.

. (1 pt) In Example 7, explain why the presence of frequency offset generates symbol points that are

smeared along arcs.

Response: The presence of frequency offset is modeled by the term exp(j27nn foT). Forn = 1,
the first symbol is rotated by a factor exp(j27 foT'). For n = 2, the second symbol is rotated
by a factor exp(jdm foT) etc... As consequence, the received symbols belong to arcs defined by
spexp(j2mnfoT).

(1pt) In Example 13, where does the statistics g1 g comes from?.
Response: If we consult one of the references such as [19], we can see that g; 1 r is an approxima-
tion of the likelihood ratio test statistics for distinguishing BPSK from MPSK(M) with M > 4.

(1pt) What kind of methods do the authors recommend when the observed data are drawn from an
unknown symbol set?

Response: The authors mention in their conclusion that hierarchical agglomerative clustering al-
gorithms (as those based on dendograms that have been studied in this course) could be used for
these cases.



