1. Maximisation du SNR

On observe un signal déterministe d’énergie finie $s(t)$ noyé dans un bruit additif $n(t)$ stationnaire de moyenne nulle et de DSP $s_n(f)$:

$$x(t) = s(t) + n(t), \quad t \in [0, T]$$

On filtre le signal $x(t)$ par un filtre linéaire (invariant dans le temps) de réponse impulsionnelle $h(t)$:

$$y(t) = y_s(t) + y_n(t)$$

$$= s(t) * h(t) + n(t) * h(t)$$

Le rapport signal sur bruit en sortie du filtre à l’instant t_0 est défini par :

$$SNR(t_0) = \frac{y_s^2(t_0)}{E[y_n^2(t_0)]}$$

Le filtre adapté au signal $s(t)$ est un filtre qui maximise ce rapport signal sur bruit. Si $H(f)$ désigne la transmittance de ce filtre et si $S(f) = TF[s(t)]$, des calculs élémentaires permettent d’obtenir

$$SNR(t_0) = \frac{y_s^2(t_0)}{E[y_n^2(t_0)]} = \frac{\left| \int_{\mathbb{R}} H(f)S(f)e^{j2\pi ft_0}df \right|^2}{\int_{\mathbb{R}} |H(f)|^2 s_n(f)df}$$
• Preuve

Numérateur

\[y_s(t) = TF^{-1} \left[S(f)H(f) \right] = \int_{\mathbb{R}} H(f)S(f)e^{j2\pi ft} df \]

Dénominateur

\[s_y_n(f) = s_n(f) |H(f)|^2 \]

Donc

\[P_{y_n} = E \left[y_n^2(t_0) \right] = K_{y_n}(0) \]

\[= \int_{\mathbb{R}} s_n(f) |H(f)|^2 df \]

Le rapport signal sur bruit \(SNR(t_0) \) peut s’écrire

\[SNR(t_0) = \frac{\left| \int_{\mathbb{R}} a(f)b^*(f)df \right|^2}{\int_{\mathbb{R}} a(f)a^*(f)df} \]

avec

\[a(f) = \sqrt{s_n(f)}H(f) \] et \[b(f) = \frac{S^*(f)}{\sqrt{s_n(f)}}e^{-j2\pi ft_0} \]

L’inégalité de Cauchy Schwartz permet de conclure, puisque \(|\langle a, b \rangle|^2 \leq \|a\|^2 \|b\|^2 \) donne :

\[\left| \int_{\mathbb{R}} a(f)b^*(f)df \right|^2 \leq \int_{\mathbb{R}} a(f)a^*(f)df \int_{\mathbb{R}} b(f)b^*(f)df \]

et donc

\[|SNR(t_0)| \leq \int_{\mathbb{R}} b(f)b^*(f)df \]

avec égalité lorsque

\[a(f) = kb(f) \]

c’est-à-dire

\[H(f) = k \frac{S^*(f)}{s_n(f)}e^{-j2\pi ft_0} \]
Cas particulier d’un bruit blanc

Soit $n(t)$ est un bruit blanc de DSP $s_n(f) = \frac{N_0}{2}$.
On a

$$H(f) = KS^*(f)e^{-j2\pi ft_0}$$

avec $K = 2k/N_0$, d’où

$$h(t) = Ks^*(t_0 - t)$$

La réponse impulsionnelle du filtre est donc le signal renversé translaté. De plus, le rapport signal à bruit maximal vérifie

$$SNR(t_0)_{\text{max}} = \int_{\mathbb{R}} b(f)b^*(f)df$$

$$= \int_{\mathbb{R}} \frac{2}{N_0} |S(f)|^2 df = \frac{2E}{N_0}$$

où E est l’énergie du signal. On voit donc que le le rapport signal à bruit maximal ne dépend pas de la forme du signal mais uniquement de son énergie :

$$SNR(t_0)_{\text{max}} = \frac{2E}{N_0}$$
2. Détection optimale

Un problème important en télécommunications est la reconnaissance de symboles après transmission dans un canal de propagation. On considère dans cette partie, le cas de deux symboles $s_0(t)$ et $s_1(t)$ d'énergies $E_0 = \int_0^T s_0^2(t)dt$ et $E_1 = \int_0^T s_1^2(t)dt$. Le signal reçu s'écrit alors :

Hypothèse $H_0 : x(t) = s_0(t) + n(t) \quad 0 \leq t \leq T$

Hypothèse $H_1 : x(t) = s_1(t) + n(t) \quad 0 \leq t \leq T$

On montre à l'aide du théorème de Neyman Pearson que la détection optimale (qui minimise la probabilité de non détection pour une probabilité de fausse alarme donnée) se fait en comparant la statistique de test

$$\phi = \int_0^T x(t)s_0(t)dt - \int_0^T x(t)s_1(t)dt$$

à un seuil judicieusement choisi.

Il est alors important de remarquer que ϕ est la différence des sorties des filtres adaptés à $s_0(t)$ et $s_1(t)$, lorsqu'on se place à l'instant $t = t_0 = T$. En effet :

Filtre adapté à $s_0(t)$ au point T

$$r_0 = x(t) * s_0(T - t) = \int_0^T x(u)s_0(u)du$$

Filtre adapté à $s_1(t)$ au point T

$$r_1 = x(t) * s_1(T - t) = \int_0^T x(u)s_1(u)du$$
Stratégie de détection

Pour détecter la présence des symboles $s_0(t)$ et $s_1(t)$, on adopte la stratégie suivante :

![Diagramme de détection]

La règle de décision est basée uniquement sur $r = (r_0, r_1)$. En général, on suppose connues les probabilités a priori suivantes :

\[
P_0 = P [s_0(t) \text{ émis}] \\
P_1 = P [s_1(t) \text{ émis}]
\]

et on adopte la règle de Bayes, c’est-à-dire qu’on décide que $s_0(t)$ a été émis si

\[
P [s_0(t) \text{ émis} | r] \geq P [s_1(t) \text{ émis} | r]
\]

Remark 1 Si $s_1(t) = -s_0(t)$, les filtres adaptés à $s_0(t)$ et $s_1(t)$ ont des réponses impulsionnelles opposées. On peut alors prendre la décision à l'aide de la sortie d'un seul filtre (voir TD).

Remark 2 La stratégie de détection se généralise de manière évidente lorsque M symboles $s_1(t), ..., s_M(t)$ sont émis.
MODAP 4 : Filtre Adapté en Télécommunications

On considère la transmission de deux symboles

\[s_0(t) = A \quad t \in [0, T] \]
\[s_1(t) = -A \quad t \in [0, T] \]

à travers un canal à bruit blanc additif Gaussien. Le signal reçu s'écrit donc

\[x(t) = s_i(t) + n(t) \quad i = 1, 2 \text{ et } t \in [0, T] \]

où \(n(t)\) est un bruit blanc (de moyenne nulle) et de DSP \(\mathcal{S}_n(f) = \frac{N_0}{2} \). Les filtres adaptés à \(s_0(t) \) et \(s_1(t) \) étant les mêmes à une constante multiplicative près, on se propose de filtrer le signal reçu par un seul filtre adapté de réponse impulsionnelle \(h(t) \) vérifiant \(\int_0^T h^2(u)du = 1 \) et de prendre une décision à l'instant \(t_0 = T \).

1) Déterminer la réponse impulsionnelle du filtre adapté \(h(t) \).

2) Quelle est la sortie de ce filtre adapté lorsque l'entrée du filtre est \(s_0(t) \)? Même question lorsque l'entrée est \(s_1(t) \). On notera \(y_n(T) \) la sortie du filtre correspondant à \(s_i(t) \).

3) Montrer que la sortie du filtre adapté lorsque l'entrée est \(n(t) \) s'écrit :

\[y_n(T) = \frac{1}{\sqrt{T}} \int_0^T n(u) du \]

Déterminer la moyenne et la variance de \(y_n(T) \).

4) Dans l'hypothèse où \(n(t) \) est un bruit blanc Gaussien, déterminer la loi de la sortie du filtre adapté à l'instant \(T \), c'est-à-dire la loi de la variable aléatoire \(r = y_n(T) + y_n(T) \) (on rappelle que le caractère Gaussien est conservé par filtrage linéaire).

5) En supposant que les symboles \(s_0(t) \) et \(s_1(t) \) ont pour probabilités a priori \(P_0 = p \) et \(P_1 = 1 - p \), déterminer \(P[s_0(t) \text{ émis} | r] \) et \(P[s_1(t) \text{ émis} | r] \). En déduire une stratégie permettant de décider lequel des deux symboles \(s_0(t) \) et \(s_1(t) \) a été émis à partir de la sortie du filtre adapté \(r \). Que donne cette stratégie lorsque \(p = \frac{1}{2} \) ?